Expression of the ethylene biosynthetic machinery in maize roots is regulated in response to hypoxia

نویسندگان

  • Jane Geisler-Lee
  • Christian Caldwell
  • Daniel R. Gallie
چکیده

Ethylene regulates plant growth in response to many adverse environmental conditions, including the induction of aerenchyma, i.e. the formation of air spaces, in flooded roots in an effort to maintain oxygen levels. In this work, quantitative RT-PCR and in situ RNA hybridization were used to determine how the expression of the ethylene biosynthetic machinery in maize roots is spatially and temporally regulated following exposure to 4% oxygen (i.e. hypoxia) for up to 24 h, conditions that induced aerenchyma formation in the fully-expanded region of the root and reduced cytoplasmic density throughout the root. Expression of ACC oxidase, the ethylene forming enzyme, was observed in the root cap, protophloem sieve elements, and companion cells associated with metaphloem sieve elements. Exposure to 4% oxygen induced ACC oxidase expression in these cell types as well as in the root cortex. ACC synthase, which generates the ethylene precursor, was expressed in the root cap and the cortex and its expression was induced in cortical cells following low oxygen treatment. The induction of expression of the ethylene biosynthetic machinery was accompanied by an induction of ethylene evolution and a reduced rate of root growth. These results suggest that maize roots respond to conditions of hypoxia by inducing the spatially restricted expression of the ethylene biosynthetic machinery, resulting in increased ethylene production.

منابع مشابه

Induction of Enzymes Associated with Lysigenous Aerenchyma Formation in Roots of Zea mays during Hypoxia or Nitrogen Starvation.

Either hypoxia, which stimulates ethylene biosynthesis, or temporary N starvation, which depresses ethylene production, leads to formation of aerenchyma in maize (Zea mays L.) adventitious roots by extensive lysis of cortical cells. We studied the activity of enzymes closely involved in either ethylene formation (1-amino-cyclopropane-1-carboxylic acid synthase [ACC synthase]) or cell-wall disso...

متن کامل

Bioinformatic and empirical analysis of a gene encoding serine/threonine protein kinase regulated in response to chemical and biological fertilizers in two maize (Zea mays L.) cultivars

Molecular structure of a gene, ZmSTPK1, encoding a serine/threonine protein kinase in maize was analyzed by bioinformatic tool and its expression pattern was studied under chemical biological fertilizers. Bioinformatic analysis cleared that ZmSTPK1 is located on chromosome 10, from position 141015332 to 141017582. The full genomic sequence of the gene is 2251 bp in length and includes 2 exons. ...

متن کامل

Comparative Physiological, Biochemical, and Genetic Responses to Prolonged Waterlogging Stress in Okra and Maize Given Exogenous Ethylene Priming

Waterlogging is an environmental challenge affecting crops worldwide. Ethylene induces the expression of genes linked to important agronomic traits under waterlogged conditions. The ability of okra (Abelmoschus esculentus L. Moench.) and maize (Zea mays L.) given exogenous ethylene priming to tolerate prolonged waterlogged conditions was investigated in this study. The investigation was carried...

متن کامل

Ethylene Biosynthesis during Aerenchyma Formation in Roots of Maize Subjected to Mechanical Impedance and Hypoxia.

Germinated maize (Zea mays L.) seedlings were enclosed in modified triaxial cells in an artificial substrate and exposed to oxygen deficiency stress (4% oxygen, hypoxia) or to mechanical resistance to elongation growth (mechanical impedance) achieved by external pressure on the artificial substrate, or to both hypoxia and impedance simultaneously. Compared with controls, seedlings that received...

متن کامل

Phytoglobins Improve Hypoxic Root Growth by Alleviating Apical Meristem Cell Death.

Hypoxic root growth in maize (Zea mays) is influenced by the expression of phytoglobins (ZmPgbs). Relative to the wild type, suppression of ZmPgb1.1 or ZmPgb1.2 inhibits the growth of roots exposed to 4% oxygen, causing structural abnormalities in the root apical meristems. These effects were accompanied by increasing levels of reactive oxygen species (ROS), possibly through the transcriptional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2010